
Fusion-Reactor.com

LogQL Cheat Sheet
This cheat sheet highlight different pattern for querying FusionReactor LogQL.

Introducing LogQL log query Language
FusionReactor queries log with its unique log query language called LogQL, often distributed as grep besides labels
for filtering. There are two parts of a basic LogQL: the filter expression and the log stream selector.

All LogQL queries contain a log streaming selector. The log stream selector does most of the work. It filters the logs
and reduces the log volume. This stream collector impacts the performance of the query's execution, depending on
the number of labels used to filter down the log streams.

Log Stream Selector
The primary function of the log stream selector is to
select and organize which log selector will query
streams. At least one or more key-value pairs are
found in the stream selector, which makes up the log
label's value. This key-value pairs are closely enclosed
in a pair of curly braces:

{app="mysql",name="mysql-backup"}

In the example above, we can see that the log
streams contain a label of the app whose value is
Mysql and a name whose value is in the query results.
The = represents the label matching operator. This
does not limit the following label matching operators
when querying logs:

● =~: regex matches.
● !~: regex does not match.
● =: exactly equal.
● !=: not equal.

Another example:

{name=~"mysql.+"}{name!~"mysql.+"}

FusionReactor and Prometheus apply the same rules
when selecting labels.

Filter expressions
After filtering the logs through the log stream selector
in FusionReactor, the resulting set of logs can be
further filtered with a search expression
The search expression can be just text or regex:

● {job="mysql"} |= "error"
● {name="kafka"} |~ "tsdb-ops.*io:2003"
● {instance=~"kafka-[23]",name="kafka"} !=

kafka.server:type=ReplicaManager
The following filter operators are supported when
querying logs:

● |=: Log line contains a string.
● !=: Log line does not contain a string.
● |~: Log line matches the regular expression.
● !~: Log line does not match the regular

expression.
Note. that all log lines should match every filter
expression, regardless of how to filter operators are
channeled for search expression:

{job="mysql"} |= "error" != "timeout"

When using |~ and !~, Go RE2 syntax regex may be
used. By default, the matching is case-sensitive and
can be switched to case-insensitive, prefixing the
regex with (?i).

1

Fusion-Reactor.com

Counting Logs
Another exciting feature of LogQL is that it can envelop a query and allow the log stream selector to count entries
per stream.

Range Vector Aggregation
LogQL range vector is unique from other log language
queries because the selected range of samples
usually includes a value of 1 for each entry. Hence,
the aggregate can envelop a selected range into an
instance vector. The range vector supported functions
are:

● rate: calculate the number of entries per second
● count_over_time: counts the entries for each log

stream within the given range.
● count_over_time({job="MySQL"}[5m])
For instance, the range vector counts all the log lines
among the first 5 minutes for the MySQL query. This
example showcases the per-second rate of all non
timeout errors
rate:

(({job="mysql"} |= "error" != "timeout)[10s]))

Aggregation operators
LogQL aggregation operators act similarly to PromQL,
which supports a subset that can aggregate the
elements of a single vector. This action results in a
new vector of fewer elements with aggregated values.

● sum: Calculate the sum over labels
● min: Select minimum over labels
● max: Select maximum over labels
● avg: Calculate the average over labels
● stddev: Calculate the population standard

deviation over labels
● stdvar: Calculate the population standard

variance over labels
● count: Count the number of elements in the

vector
● bottomk: Select the smallest k elements by

sample value
● topk: Select largest k elements by sample

value

Also, by using a without or by clause, whether a
without or by clause, the log operators can use the
aggregation operators to aggregate over all label
values or a set of distinct values.
For instance

<aggr-op>([parameter,] <vector expression>)
[without|by (<label list>)]

Note. Using parameters is only needed when using
topk, bottomk., and topk, considered group vectors.
Aggregators such as bottomk are different from other
aggregators within the sample subset.
The without cause removes listed labels from results,
while the by clause does the opposite, unlisting labels
that are not part of the clause, regardless of label
identity.
For instance: filter logs for the top 10 applications by
highest log throughput;

topk(10,sum(rate({region="us-east1"}[5m])) by
(name))

Get the count of logs during the last five minutes,
grouping by level:

sum(count_over_time({job="mysql"}[5m])) by (level)

Get the rate of HTTP GET requests from NGINX logs:

avg(rate(({job="nginx"} |= "GET")[10s])) by (region)

2

